Las crisis de los refrigerantes fluorados, motivada por las restricciones de la Unión Europea transporte y distribución de frío a los distintos sobre su comercialización, han inducido un servicios.

sobre su comercialización, han inducido un creciente interés por los sistemas indirectos de refrigeración frente a los convencionales sistemas de expansión directa, en cuanto a su aplicación en refrigeración comercial, industrial y aire acondicionado.

Tradicionalmente en los sistemas directos, el propio refrigerante frigorígeno es directamente distribuido a los distintos servicios a enfriar y retornado de nuevo al compresor. En ambilados, en los sistemas indirectos se utiliza un fluido caloportador o refrigerante secun-

USO DE LOS SISTEMAS INDIRECTOS DE REFRIGERACIÓN

en el ámbito de la refrigeración industrial, comercial y el acondicionamiento de aire

LAS GUÍAS DE AEFYT

TÍTULO DE LA PUBLICACIÓN

"Guía para el uso de los sistemas indirectos de refrigeración en el ámbito de la refrigeración industrial, comercial y el acondicionamiento de aire"

Publicado por primera vez en 2023.

AUTORES

Javier Cano, Ingeniero. INTARCON

José Pedro García, Bioquímico. CHEMOURS SPAIN

Maurizio Giuliani, Ingeniero consultor experto en refrigeración

Jose Luis Lazaro, Ingeniero. ABR INGENIEROS

Juan Carlos Rodríguez, Ingeniero. CLAUGER REFRIGERACIÓN IBERIA

Félix Sanz. Ingeniero. AEFYT Enrique Galán, Ingeniero. BELIMO

Ricard Giménez, Ingeniero Consultor. Asesor de AEFYT

Manuel Lamúa, Ingeniero. AEFYT

Federico Martínez, Ingeniero. HTF IBERIAN PARTNERS

Pablo Rodriguez, Ingeniero. KIDE S.COOP.

DISEÑO Y MAQUETACIÓN

Sara Gurrea

REDACCIÓN

Félix Sanz, ingeniero de AEFYT

ISBN: 978-84-09-53015-1 Deposito legal M-29681-2023 Editorial: Asociación de Empresas de Frío y sus Tecnologías (AEFYT)

Cualquier reproducción, parcial o total de la presente publicación, debe contar con la aprobación por escrito de AEFYT. AEFYT no acepta ninguna responsabilidad por posibles errores en sus guías o cualquier material impreso, reservándose el derecho de alterar los documentos sin previo aviso.

Prólogo de AEFYT

En AEFYT se potencia la difusión de todos los campos y conceptos de refrigeración. Por ello tras el desarrollo de varias guías técnico comerciales para fomentar el uso de distintos refrigerantes como el amoniaco, los refrigerantes A2L de bajo potencial de calentamiento atmosférico, el anhídrido carbónico, y mientras espera la guía para refrigerantes inflamables A3, se consideró que realizar una guía sobre sistemas indirectos era interesante. Esta guía es un complemento a todas ellas, ya que es una tecnología que puede aplicarse a cualquier sistema frigorífico con cualquier tipo de los refrigerantes citados.

Además de la colaboración de distintas empresas del sector, para elaborar un documento consensuado entre todos los participantes con reuniones de trabajo periódicas con participación de expertos del sector, se ha contado con el material base del curso desarrollado por AEFYT de "Sistemas indirectos y equilibrado hidráulico en refrigeración" con la colaboración de los profesores del mismo.

Las restricciones de la Unión Europea sobre la comercialización de los refrigerantes fluorados, han inducido un creciente interés por los sistemas indirectos de refrigeración frente a los convencionales sistemas de expansión directa, en cuanto a su aplicación en refrigeración comercial, industrial y aire acondicionado.

Los sistemas indirectos permiten reducir la carga de refrigerante primario entorno al 5 - 15% de la carga de un sistema directo, utilizando diseños compactos completamente ensamblados y ensayados en fábrica, y reduciendo así significativamente el riesgo de fugas. La ubicación de estos equipos al aire libre o en sala de máquinas permite la utilización de refrigerantes con cierta toxicidad e inflamabilidad de forma segura.

Con esta guía queremos aportar nuestro granito de arena facilitando la transmisión de conocimiento que permita la instalación segura de los sistemas frigoríficos, aportando soluciones sostenibles, en un mundo donde el frio cada día es más necesario.

Prólogo de IIAR

The IIAR is pleased to offer its support of AEFYT's recently published "Uso de los sistemas indirectos de refrigeración en el ámbito de la refrigeración industrial, comercial y el acondicionamiento de aire" as an aid for understanding the history and practical use of indirect systems in refrigeration. The guideline addresses the important aspects of environmental sustainability, safety concerns, and system operations. The phaseout of fluorinated refrigerants and concern for energy efficiency make the use of indirect systems using other natural refrigerants as primary circuit ever more important, and this publication will promote its use within traditional and diversified industries where indirect systems can be successfully used. IIAR is an association of over 3400 refrigeration professionals dedicated to the safe use of natural refrigerants through the development of standards, guidelines, research, and educational programs. We at IIAR, wish the best to our allied association, AEFYT, and congratulate them in creating such an interesting and informative document.

www.iiar.org

El IIAR se complace en ofrecer su apoyo a la Guía sobre el "Uso de los sistemas indirectos de refrigeración en el ámbito de la refrigeración industrial, comercial y el acondicionamiento de aire" recientemente publicada por AEFYT, como una ayuda para comprender la historia y el uso práctico de los sistemas indirectos de refrigeración. Su generatriz aborda aspectos importantes de la sostenibilidad ambiental, las preocupaciones de seguridad y la operatividad del sistema. La eliminación gradual de los refrigerantes fluorados y la preocupación por la eficiencia energética hacen que el uso de los sistemas indirectos utilizando otros refrigerantes naturales como primarios, sea cada vez más importante. Esta publicación promoverá su uso en industrias tradicionales y diversificadas donde los sistemas indirectos se puede usar con éxito. IIAR es una asociación de más de 3400 profesionales de refrigeración dedicados al uso seguro de refrigerantes naturales a través del desarrollo de estándares, pautas, investigación y programas educativos. Desde el IIAR deseamos lo mejor a nuestra asociación aliada, AEFYT, y los felicitamos por crear un documento tan interesante e informativo.

www.iiar.org

Prólogo de IOR

The IOR welcomes this publication by AEFYT as helpful and practical guidance on the use of indirect systems. IOR has not conducted a detailed review of the text in Spanish but we appreciate the style of presentation and, we support guidance that helps to improve knowledge, awareness and safety of the use of indirect cooling systems. The Institute of Refrigeration is the UK professional association and scientific charity for the promotion of the science and practice of refrigeration for the public benefit and provides technical expertise representing over 2000 individual UK members.

www.ior.org.uk

El IOR acoge con satisfacción esta publicación de AEFYT como guía útil y práctica sobre el uso de sistemas indirectos. IOR no ha realizado una revisión detallada del texto en español, pero apreciamos el estilo de presentación y apoyamos la orientación que ayuda a mejorar el conocimiento, la conciencia y la seguridad del uso de los sistemas indirectos de refrigeración. El Instituto de Refrigeración es la asociación profesional y científica benéfica del Reino Unido para la promoción de la ciencia y la práctica de la refrigeración para el beneficio público y proporciona experiencia técnica que representa a más de 2000 miembros individuales del Reino Unido.

www.ior.org.uk

INDICE

17	Introducción
23	Capítulo 1. Sistemas indirectos de refrigeración
23	1.1 Caracterización de los sistemas indirectos
23	Sistema indirecto cerrado
23	Sistema indirecto ventilado
24	Sistema indirecto cerrado ventilado
24	Sistema doble indirecto
24	Sistema indirecto de alta presión
25	Producción centralizada y distribuida. Lazos de frio y lazos de condensación
27	1.2 Ventajas y limitaciones de los sistemas indirectos
35	Capítulo 2. Normativa aplicable
36	2.1 Reglamento de Seguridad para Instalaciones Frigoríficas RD 552/2019
37	2.2 Reglamento de Ecodiseño
38	2.3 Cálculo del rendimiento estacional (SEPR)
41	Capítulo 3. Fluidos Frigoríferos o Refrigerantes secundarios
41	3.1 Propiedades termodinámicas
42	Punto de congelación
44	Densidad e índice de refracción
44	Dilatación térmica
44	Potencia frigorífica
45	Otras propiedades termodinámicas. Variación con la temperatura
46	3.2 Soluciones acuosas
47	Glicoles

48 49 49 49	Agua amoniacal Salmueras inorgánicas Alcoholes Salmueras orgánicas
52	3.3 Hielo líquido
53	3.4 Aceites térmicos
53	3.5 Fluidos con cambio de fase (PCM)
55	3.6 Comparación de características entre varios fluidos secundarios
61	Capítulo 4. Circuitos Indirectos en Refrigeración. Diseño de Circuitos Secundarios
64	4.1 Sistemas de Lazo de Agua o Condensación Indirecta
66	4.2 Sistemas indirectos con CO ₂
68	4.3 Sistemas indirectos con acumulación de frío
75	Capítulo 5. Componentes de circuitos secundarios
75	5.1 Intercambiadores de calor
82	5.1.1 Curva característica de un intercambiador de calor
82 83	5.1.2 Aeroenfriador adiabático
84	5.1.3 Desescarche de aeroenfriadores
-	5.1.3 Desescarche de aeroenfriadores 5.1.4 Dispositivos de medición de energía
85	5.1.3 Desescarche de aeroenfriadores 5.1.4 Dispositivos de medición de energía Medición de la energía térmica
	5.1.4 Dispositivos de medición de energía
85	5.1.4 Dispositivos de medición de energía Medición de la energía térmica
85 86 88 88	5.1.4 Dispositivos de medición de energía Medición de la energía térmica El desafío de la medición del glicol 5.2 Tuberías 5.2.1 Tuberías metálicas
85 86 88 88 88	5.1.4 Dispositivos de medición de energía Medición de la energía térmica El desafío de la medición del glicol 5.2 Tuberías 5.2.1 Tuberías metálicas Tipos de tuberías de metal
85 86 88 88 88 90	5.1.4 Dispositivos de medición de energía Medición de la energía térmica El desafío de la medición del glicol 5.2 Tuberías 5.2.1 Tuberías metálicas Tipos de tuberías de metal 5.2.2 Tuberías plásticas
85 86 88 88 88 90 91	5.1.4 Dispositivos de medición de energía Medición de la energía térmica El desafío de la medición del glicol 5.2 Tuberías 5.2.1 Tuberías metálicas Tipos de tuberías de metal 5.2.2 Tuberías plásticas Tipos de tuberías plásticas
85 86 88 88 88 90	5.1.4 Dispositivos de medición de energía Medición de la energía térmica El desafío de la medición del glicol 5.2 Tuberías 5.2.1 Tuberías metálicas Tipos de tuberías de metal 5.2.2 Tuberías plásticas

100	5.2. 5 Dilatación y contracción de tuberías
102 107 109 112 114 117 118	 5.3 Bombas hidráulicas 5.3.1 Bombas hidráulicas 5.3.2 Curva característica de una bomba 5.3.3 Curva característica del circuito de la instalación 5.3.4 Punto de funcionamiento de la instalación 5.3.5 Regulación del punto de funcionamiento de la instalación 5.3.6 Selección de la bomba 5.3.7 Cavitación
125	Capítulo 6. Depósitos
125 125 128 128 130 130	6.1 Vasos de Expansión 6.1.1 Vasos de expansión abiertos y cerrados Ubicación del vaso de expansión Compensadores hidráulicos y depósitos de inercia Caudal del circuito secundario superior al caudal del circuito primario Dimensionado del compensador hidráulico
135	Capítulo 7. Control y equilibrado hidráulico de sistemas indirectos
135 138 139 140 141 141 141 142	7.1 Regulación y control. Criterios de control de sistemas hidráulicos indirectos 7.1.1 Sistemas a caudal constante 7.1.2 Sistemas de caudal variable Caudal Primario variable Primario constante - Secundario variable (Primario por etapas) Primario constante - Secundario variable (Primario Secundario) Primario y secundario constante (sistema de caudal constante) Sistemas de refrigeración urbana (district cooling)
142	7.2 Equilibrio hidráulico
144 145 146	 7.3 Válvulas 7.3.1 Curva característica de la válvula de control 7.3.2 Autoridad de la válvula de control vs Característica de control. Modificación de la

curva característica

148 150 151	7.3.3 Tipos de válvulas de control hidráulico 7.3.4 Válvulas de dos y tres vías 7.3.5 Actuadores de válvulas
152	7.4 Válvulas combinadas. V. Control Equilibradas e Independientes de la Presión (PIBCV)
157	7.5 Puesta en marcha y optimización del bombeo con válvulas PIBCV
158	7.6 Potenciales ahorros energéticos
167	Capítulo 8. Contaminantes en sistemas secundarios
170	Válvula rompe vacío
173	Capítulo 9. Plantas enfriadoras
177	Capítulo 10. Seguridad, instalación y puesta en marcha
177	Controles del sistema
177	Pruebas de presión
178	Seguridades
178	Válvula de seguridad
179	Anomalías de funcionamiento
179	Mantenimiento
180	Rellenado
185	Capítulo 11. Aplicaciones de los sistemas indirectos en la industria
185	11.1 Industria alimentaria
185	Mataderos frigoríficos
186	Centrales hortofrutícolas
186	Industria pesquera en el mar
187	Industria de la pesca en tierra
188	Industrias lácteas y centrales lecheras
188	Fábricas de bebidas
189	Secaderos para el curado de jamones, embutidos, quesos y pescados
189	Elaboración de productos de confitería, pastelería, bollería y repostería
190	Centros de distribución logística

205	Enlaces de interés
201	Bibliografía y referencias
199	Conclusión
400	
195	11.7 Aplicaciones en el sector de la climatización
194	11.6 Aplicación en el sector terciario
194	11.5 Instalaciones de ocio y deporte
192	11.4 Congelación del suelo
192 192	Industria Petroquímica Equipos especiales
191 191	Industria farmacéutica Industria Química
191	11.3 Otros procesos industriales
190 190	11.2 Procesos industriales Conformación y transformación de plástico
190	Otros centros de producción de alimentos

Introducción

Las crisis de los refrigerantes fluorados, motivada por las restricciones de la Unión Europea sobre su comercialización, han inducido un creciente interés por los sistemas indirectos de refrigeración frente a los convencionales sistemas de expansión directa, en cuanto a su aplicación en refrigeración comercial e industrial.

Tradicionalmente en los sistemas directos, el propio refrigerante frigorígeno es directamente distribuido a los distintos servicios a enfriar y retornado de nuevo al compresor. En cambio, en los sistemas indirectos se utiliza un fluido caloportador o refrigerante secundario, normalmente glicol o salmuera, para el transporte y distribución de frío a los distintos servicios.

Los fluidos secundarios o frigoríferos (refrigerantes secundarios, salmueras, soluciones acuosas, etc.) son utilizados en sistemas frigoríficos indirectos para transportar frio desde el evaporador a los servicios, o calor desde el condensador a un

SISTEMA DIRECTO

El gas refrigerante comprimido y condensado, sale de la zona de las salas de máquinas y se distribuye a las unidades remotas (Evaporadores).

SISTEMA INDIRECTO

El gas refrigerante se confina en la zona de generación del frío y allí se transfiere la potencia frigorífica , mediante intercambiador de calor, a un fluido intermedio.

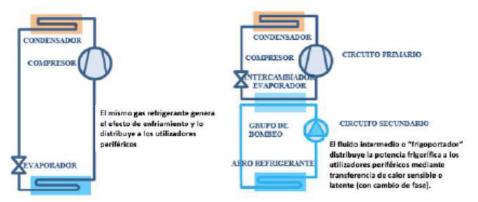


Fig. 1 Esquemas indicativos de sistemas directos vs indirectos

elemento de disipación externo, con el objeto de independizar el sistema de producción de frio o calor del sistema a enfriar o calentar. Se genera de esta forma un sistema de transporte de energía térmica. La figura 2 esquematiza un sistema indirecto en evaporación y en condensación, a la vez que indica los perfiles de temperatura de los fluidos secundarios a la largo del circuito.

Los sistemas indirectos permiten reducir la carga de refrigerante primario entorno al 5 - 15% de la carga de un sistema directo, utilizando diseños compactos completamente ensamblados y ensayados en fábrica, y reduciendo así significativamente el riesgo de fugas. La ubicación de estos equipos al aire libre o en sala de máquinas permite además la utilización de refrigerantes

inflamables de forma segura, erradicando por completo el empleo de gases fluorados.

Los sistemas indirectos presentan un mayor coste inicial por los intercambiadores y grupos de bombeo adicionales e implican un consumo energético extra para el transporte del refrigerante secundario. Las últimas tecnologías de bombas con variación de frecuencia junto con los sistemas de control para caudal variable han logrado salvar en cierta medida el anterior inconveniente.

Estos sistemas pueden contener hasta tres circuitos cerrados. El circuito primario es el encargado de generar calor o frio por medio de un sistema de compresión de vapor de forma que

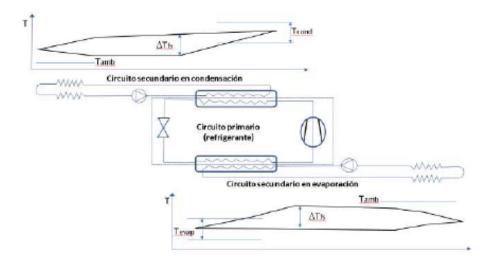


Fig. 2 Esquema de un sistema indirecto y perfiles de temperatura

transporta el frio robado en el evaporador a un primer circuito secundario llevándolo a la zona del condensador o a la zona transcrítica en contacto con un segundo circuito secundario. Este circuito primario es el generador de frio/calor, y suelen ser enfriadores de líquidos (enfriadoras de agua) en sus distintas variantes liquido-líquido, liquido-aire, aire-líquido. El primer circuito secundario que aporta calor al evaporador del primario es el circuito que transporta el frio a la zona a enfriar en la aplicación. Esta zona puede contener alimentos, zonas de confort o cualquier tipo de área con necesidad de refrigeración. El segundo circuito secundario, transporta el calor del condensador o enfriador transcrítico a un sumidero donde se disipa al exterior, normalmente aire del ambiente, pero también puede ser a un medio diferente (mar, lago, rio, etc.).

Se encontrarán casos donde algún circuito secundario no exista. En estos casos el conjunto se simplifica ya que solo existirán los sistemas de generación de frio/calor y un sistema de transporte con una bomba.

Esta guía ha sido posible gracias al patrocinio de

